82 research outputs found

    Moderate-Luminosity Growing Black Holes From 1.25 < z < 2.7: Varied Accretion In Disk-Dominated Hosts

    Full text link
    We compute black hole masses and bolometric luminosities for 57 active galactic nuclei (AGN) in the redshift range 1.25 < z < 2.67, selected from the GOODS-South deep multi-wavelength survey field via their X-ray emission. We determine host galaxy morphological parameters by separating the galaxies from their central point sources in deep HST images, and host stellar masses and colors by multi-wavelength SED fitting. 90% of GOODS AGN at these redshifts have detected rest-frame optical nuclear point sources; bolometric luminosities range from 2e43 - 2e46 erg/s. The black holes are growing at a range of accretion rates, with at least 50% of the sample having L/L_Edd < 0.1. 70% of host galaxies have stellar masses M* > 1e10 M_sun, with a range of colors suggesting a complex star formation history. We find no evolution of AGN bolometric luminosity within the sample, and no correlation between AGN bolometric luminosity and host stellar mass, color or morphology. Fully half the sample of host galaxies is disk-dominated, with another 25% having strong disk components. Fewer than 15% of the systems appear to be at some stage of a major merger. These moderate-luminosity AGN hosts are therefore inconsistent with a dynamical history dominated by mergers strong enough to destroy disks, indicating minor mergers or secular processes dominate the co-evolution of galaxies and their central black holes at z ~ 2.Comment: 11 pages, 6 figures, accepted to ApJ. Sersic indices, AGN/galaxy luminosity ratios, stellar masses etc. provided in Table

    Major Mergers Host the Most Luminous Red Quasars at z ~ 2: A Hubble Space Telescope WFC3/IR Study

    Full text link
    We used the Hubble Space Telescope WFC3 near-infrared camera to image the host galaxies of a sample of eleven luminous, dust-reddened quasars at z ~ 2 -- the peak epoch of black hole growth and star formation in the Universe -- to test the merger-driven picture for the co-evolution of galaxies and their nuclear black holes. The red quasars come from the FIRST+2MASS red quasar survey and a newer, deeper, UKIDSS+FIRST sample. These dust-reddened quasars are the most intrinsically luminous quasars in the Universe at all redshifts, and may represent the dust-clearing transitional phase in the merger-driven black hole growth scenario. Probing the host galaxies in rest-frame visible light, the HST images reveal that 8/10 of these quasars have actively merging hosts, while one source is reddened by an intervening lower redshift galaxy along the line-of-sight. We study the morphological properties of the quasar hosts using parametric Sersic fits as well as the non-parametric estimators (Gini coefficient, M_{20} and asymmetry). Their properties are heterogeneous but broadly consistent with the most extreme morphologies of local merging systems such as Ultraluminous Infrared galaxies. The red quasars have a luminosity range of log(L_bol) = 47.8 - 48.3 (erg/s) and the merger fraction of their AGN hosts is consistent with merger-driven models of luminous AGN activity at z=2, which supports the picture in which luminous quasars and galaxies co-evolve through major mergers that trigger both star formation and black hole growth.Comment: Submitted to ApJ. This version includes the response to the referee repor

    Discovery of Two Spectroscopically Peculiar, Low-Luminosity Quasars at z~4

    Get PDF
    We report the discovery of two low-luminosity quasars at z~4, both of which show prominent N IV] 1486A emission. This line is extremely rare in quasar spectra at any redshift; detecting it in two out of a sample of 23 objects (i.e., ~ 9% of the sample) is intriguing and is likely due to the low-luminosity, high-redshift quasar sample we are studying. This is still a poorly explored regime, where contributions from associated, early starbursts may be significant. One interpretation of this line posits photoionization by very massive young stars. Seeing N IV] 1486A emission in a high-redshift quasar may thus be understood in the context of co-formation and early co-evolution of galaxies and their supermassive black holes. Alternatively, we may be seeing a phenomenon related to the early evolution of quasar broad emission line regions. The non-detection (and possibly even broad absorption) of N V 1240A line in the spectrum of one of these quasars may support that interpretation. These two objects may signal a new faint quasar population or an early AGN evolutionary stage at high redshifts.Comment: 15 pages, 5 figures, Accepted for publicated in ApJ Letter

    The Faint End of the Quasar Luminosity Function at z ~ 4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing

    Get PDF
    We present an updated determination of the z ~ 4 QSO luminosity function (QLF), improving the quality of the determination of the faint end of the QLF presented by Glikman et al. (2010). We have observed an additional 43 candidates from our survey sample, yielding one additional QSO at z = 4.23 and increasing the completeness of our spectroscopic follow-up to 48% for candidates brighter than R = 24 over our survey area of 3.76 deg^2. We study the effect of using K-corrections to compute the rest-frame absolute magnitude at 1450 Å compared with measuring M_(1450) directly from the object spectra. We find a luminosity-dependent bias: template-based K-corrections overestimate the luminosity of low-luminosity QSOs, likely due to their reliance on templates derived from higher luminosity QSOs. Combining our sample with bright quasars from the Sloan Digital Sky Survey and using spectrum-based M 1450 for all the quasars, we fit a double power law to the binned QLF. Our best fit has a bright-end slope, α = 3.3 ± 0.2, and faint-end slope, β = 1.6^(+0.8)_(–0.6). Our new data revise the faint-end slope of the QLF down to flatter values similar to those measured at z ~ 3. The break luminosity, though poorly constrained, is at M* = –24.1^(+0.7)_(–1.9), approximately 1-1.5 mag fainter than at z ~ 3. This QLF implies that QSOs account for about half the radiation needed to ionize the intergalactic medium at these redshifts

    Spitzer Observations of Young Red Quasars

    Get PDF
    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 Ã… emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample

    Finding rare AGN: X-ray Number Counts of Chandra Sources in Stripe 82

    Get PDF
    We present the first results of a wide area X-ray survey within the Sloan Digital Sky Survey (SDSS) Stripe 82, a 300 deg2 region of the sky with a substantial investment in multi-wavelength coverage. We analyzed archival {\it Chandra} observations that cover 7.5 deg2 within Stripe 82 ( Stripe 82 ACX ), reaching 4.5σ flux limits of 7.9×10−16, 3.4×10−15 and 1.8×10−15 erg s−1 cm−2 in the soft (0.5-2 keV), hard (2-7 keV) and full (0.5-7 keV) bands, to find 774, 239 and 1118 X-ray sources, respectively. Three hundred twenty-one sources are detected only in the full band and 9 sources are detected solely in the soft band. Utilizing data products from the {\it Chandra} Source Catalog, we construct independent LogN-LogS relationships, detailing the number density of X-ray sources as a function of flux, which show general agreement with previous {\it Chandra} surveys. We compare the luminosity distribution of Stripe 82 ACX with the smaller, deeper CDF-S + E-CDFS surveys and with {\it Chandra}-COSMOS, illustrating the benefit of wide-area surveys in locating high luminosity AGN. We also investigate the differences and similarities of X-ray and optical selection to uncover obscured AGN in the local Universe. Finally, we estimate the population of AGN we expect to find with increased coverage of 100 deg2 or 300 deg2, which will provide unprecedented insight into the high redshift, high luminosity regime of black hole growth currently under-represented in X-ray surveys
    • …
    corecore